

The epidemiology, clinicopathological characteristics and outcomes of GISTs in Durham and Tees Valley

(Melissa Friel, Helen Wescott, YKS Vishwanath, Nick Wadd, Anjan Dhar)

Anjan Dhar DM, MD, FRCPE, AGAF, MBBS (Hons.), Cert. Med. Ed

Senior Lecturer in Gastroenterology Consultant Gastroenterologist

Introduction

- Gastrointestinal stromal tumours (GISTs):
 - 0.1-3% of all GI neoplasms (predicted incidence of 900 cases/yr in UK and 50 in NCN)
 - result most commonly from KIT (CD117) or platelet-derived growth factor receptor α (PDGFR α)-activating mutations.
- Clinical presentation:
 - variable depending on the site and size of the tumour
 - metastases at presentation being a generally uncommon occurrence.
- Treatment strategies depend on site, size, malignant potential and metastases.
 - surgery
 - use of tyrosine kinase inhibitors
- Long term follow recommended
 - high risk of local recurrence and metastases

Malignant potential of GIST – NIH stratification¹

1. Fletcher CDM et al. Human Pathol 2002.

Immunohistochemical markers for GIST¹

	CD117 (c-KIT)	CD34	SMA	Desmin	S-100
GIST	+ Around 90%	+ 60—70%	+ 30—40%	Very Rare	+ 5%
Smooth muscle tumour	_	+ 10—15%	+	+	Rare
Schwannoma	_	+	_	_	+

1. Fletcher CDM et al. Hum Pathol 2002.

Retrospective analysis of GISTs in Durham and Tees Valley, 2007-12

- Review clinical presentations
- Pathological characteristics
- Treatment outcomes over a five year follow-up period
- Analysing prognostic factors associated with adverse outcomes.

Methods

- Patients identified from the Regional Tumour Registry Database at James Cook University Hospital, between Jan 2007 and Dec 2012.
- Data recorded:
 - baseline demographics
 - tumour characteristics
 - tumour size
 - mitotic index
 - immunohistochemical markers and other pathological parameters
- Patients were risk-stratified according to NIH and AFIP risk-stratification systems.
- Overall survival assessed using Kaplan–Meier survival analysis.
- Prognostic factors analysed using stepwise Cox proportional hazard analysis.

Results

- 42 patients with GISTs.
- Tumour size: 1.0 12.7cm.
- 9 (21.4%) tumours were incidental. (Identified during scanning for other conditions
- 8 (19.0%) patients had concurrent tumour diagnoses
- 2 (4.8%) patients had multiple primaries at diagnosis
- Of those with metastases at diagnosis, 7 loco-regional and 12 distant
 - liver most commonly affected metastatic site.
- Adjuvant Imatinib therapy given to 4 patients (combination therapy)
 - in 2, the tumour converted from unresectable to removable.
 - 2 patients were given palliative chemotherapy, the remainder were managed conservatively.
- Recurrence was confirmed in 5 (11.9%) patients at a median of 597 (range 402-943) days
- Of these, 2 were deemed low risk by all three classification systems.

Clinical characteristics

Baseline Clinical Variables	Outcome
Age, n (%)	
<50 years	5 (11.9)
≥50 years	37 (88.1)
Gender, n (%)	
Male	18 (42.9)
Female	24 (57.1)
Tumour site, n (%)	
Stomach	36 (85.7)
Small intestine	5 (11.9)
Oesophagus	1 (2.4)
Tumour size, mean (SD)	5.46 (3.7)
Metastases at Dx, n (%)	19 (45.2)

Histopathological features

Histopathological Variables (n=32)	Number of patients (%)
Histology	
Epitheloid	10 (33.1)
Spindle	17 (53.1)
Mixed	5 (15.6)
Immunohistochemistry	
CD117	29 (90.6)
CD34	24 (75.0)
DOG1 (n=18)	18 (100)
Mitotic index	
<5/50 HPF	15 (46.9)
>5/50 HPF	17 (53.1)

Spindle

Pleomorphic

Treatment and outcomes

Treatment outcomes	Number of patients (%)
AFIP score (n=32)	
Very low risk	3 (9.4)
Low risk	10 (31.3)
Intermediate risk	8 (25.0)
High risk	11 (34.8)
Treatment (n=42)	
Surgery	23 (54.8)
Imatinib	10 (28.3)
Combination	5 (11.9)
Recurrence	5 (11.9)
Survival (months), med (IQR)	24.2 (13.9-35.8)

Survival curves

Survival statistics

Survival statistics

Survival statistics

Predictors of survival

- Univariate analysis:
 - age, tumour site, tumour size, mitotic count, metastases at diagnosis, AFIP criteria and treatment were all independent predictors of survival.
- Multivariate analysis:
 - variables significant on univariate analysis were included.
- Stepwise Cox proportional hazards regression analysis showed age, tumour site and tumour size to be significant independent predictors of outcome in patents with GISTs (p=0.003, 0.007 and 0.048 respectively).

Conclusions

- 42 patients with GISTs diagnosed over a 5 year period
- Annual incidence 8pts/yr/1.2million population
- Stomach commonest site.
- Patient demographics, clinical presentations and tumour characteristics are somewhat similar to those reported previously in literature.
- Age, tumour site and tumour size to be the most important predictors of overall survival in our cohort.
- AFIP risk-stratification system performed the best in relation to overall survival but recurrence was unfortunately noted in 2 patents deemed at low risk by this and other scoring systems, suggesting that further work into these prognostic models is perhaps needed

Comparison with recent literature

• <u>A recent Japanese study:</u>

- 712 Japanese patients with GISTs
- tumour size, mitotic count, tumour site, and clinical features of rupture and/or invasion to be the most important prognostic factors for GIST recurrence.
- Comparison of the available risk-stratification systems showed Joensuu's modified NIH classification as the best identify candidates at high risk of recurrence.
- Significant treatment benefit with combined therapy compared to surgery or imatinib alone, perhaps indicating better overall survival with composite therapy.

Limitations and key messages

- Retrospective study
- small patient numbers.
- Early diagnosis with a combination of radical surgery and targeted molecular therapy should be the standard of care where possible.
- Rigorous follow-up over a prolonged period is necessary to prevent recurrence, even in patients deemed at low risk by current risk-stratification systems.
- A combination of surgery and imatinib may be necessary to provide a curative treatment for GISTs and prevent recurrence.

• Current risk-categorisation models appear to be inaccurate in estimating recurrence risk with discrepancies in predicting behaviour for many low-risk tumours.

• A weighted scoring system, where points are allocated to identified independent factors associated with poor prognosis, according to their contribution to the model, may serve as a more accurate clinical prediction tool.

References

- Miettinen M, Sobin LH, Lasota J. Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol. 2005; 29: 52–68.
- von Mehren M, Randall RL, Benjamin RS, et al. Gastrointestinal stromal tumours; v 2.2014. J Natl Compr Canc Netw. 2014; 12(6):853-862.
- Yanagimoto Y1, Takahashi T, Muguruma K, et al. Re-appraisal of risk classifications for primary gastrointestinal stromal tumors (GISTs) after complete resection: indications for adjuvant therapy. Gastric Cancer. 2014 May 23. [Epub ahead of print]